Flexural Behavior of the Innovative CA-UHPC Slabs with High and Low Reinforcement Ratios

Author:

Feng Yu1ORCID,Qi Jianan1,Wang Jingquan1ORCID,Liu Jiaping2,Liu Jianzhong2

Affiliation:

1. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing 211189, China

2. State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 210098, China

Abstract

This paper presents an experimental study on the flexural behavior of an innovative CA-UHPC (ultrahigh-performance concrete containing coarse aggregate) slab with high and low reinforcement ratios. A total of eighteen CA-UHPC slabs were tested to failure under the parameters of longitudinal reinforcement ratio, curing method, and maximum aggregate size. Test results indicated that sufficient longitudinal reinforcement should be embedded to prevent the brittle failure and disastrous damage. High ductile failure mode was observed for specimens with high reinforcement ratio compared with specimens with low reinforcement ratio. Instead of extensively crushing as normal strength concrete, delamination failure appeared in the compression zone of the CA-UHPC slabs owing to the fibers’ bridging effect, the yielding of longitudinal reinforcement, and the large expansion of flexural cracks which led to the final failure. The reinforced CA-UHPC slabs demonstrated excellent deformability, and ultimate ratio of deflection to span increased from 1/281 to 1/12 when the reinforcement ratio raised from 0% to 3.45%. Stiffness of the reinforced specimens at the flexural cracking state was about 88% and only approximately 6% at the ultimate state, but nearly 50% of the initial stiffness remained when the longitudinal reinforcements yielded, which indicated superior load resistance ability and excellent postcracking deformability. A new ductility index was proposed to evaluate the postcracking ductility of the CA-UHPC specimens. Finally, test results were compared with the flexural strength predictions of CECS 38-2004, ACI 544.4R, and BS EN 1992.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3