Assessment of Performance of Posidona oceanica (L.) as Biosorbent for Crude Oil-Spill Cleanup in Seawater

Author:

Ben Jmaa Senda1,Kallel Amjad1ORCID

Affiliation:

1. Laboratory of Water, Energy and Environment, Sfax National School of Engineering, University of Sfax, Sfax 3038, Tunisia

Abstract

The marine environment is constantly at risk of pollution by hydrocarbon spills that requires its cleanup to protect the environment and human health. Posidonia oceanica (L.) (PO) beach balls, which are characteristic of the Mediterranean Sea and abundant on the beaches, are used as biosorbent to remove hydrocarbons from the sea. The impact of several factors such as oil concentration, time sorption, and weight sorbent was investigated to determine the oil and water sorption capacity for raw and milled P. oceanica fibers. The study of kinetic models for initial crude oil concentration of 2.5, 5, 8.8, 10, 15, 20, 30, and 40 g/L revealed that crude uptake followed the pseudo-first-order model while, for isotherm models, the crude uptake onto the P. oceanica tended to fit the Langmuir model. Experiments were performed according to two systems: a pure oil and pure water system and a mixed oil/water system. For the dry system (pure oil and pure water), the maximum oil and water sorption capacity of raw and milled fibers was found to be 5.5 g/g and 14 g/g for oil and 14.95 g/g and 15.84 g/g for water, respectively, whereas, in the mixed oil/water system, the maximum oil and water sorption capacity was estimated as 4.74 g/g, 12.80 g/g and 7.41 g/g, 8.31 g/g, respectively. The results showed that, in spite of their absorbency of a lot of water, the milled fibers with grain size ranging between 0.5 mm and 1 mm might be the relevant sorbent for the elimination of crude oil from seawater thanks to its efficient sorption capacity and low cost.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3