Penetration of Milk-Derived Antimicrobial Peptides into Phospholipid Monolayers as Model Biomembranes

Author:

Barzyk Wanda1ORCID,Rogalska Ewa2,Więcław-Czapla Katarzyna3

Affiliation:

1. Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Street 8, 30-239 Cracow, Poland

2. UMR 7565 CNRS SRSMC, Université de Lorraine, Faculté des Sciences et Technologies, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France

3. Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow, Poland

Abstract

Three antimicrobial peptides derived from bovine milk proteins were examined with regard to penetration into insoluble monolayers formed with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DPPG). Effects on surface pressure (Π) and electric surface potential (ΔV) were measured,Πwith a platinum Wilhelmy plate andΔVwith a vibrating plate. The penetration measurements were performed under stationary diffusion conditions and upon the compression of the monolayers. The two type measurements showed greatly different effects of the peptide-lipid interactions. Results of the stationary penetration show that the peptide interactions with DPPC monolayer are weak, repulsive, and nonspecific while the interactions with DPPG monolayer are significant, attractive, and specific. These results are in accord with the fact that antimicrobial peptides disrupt bacteria membranes (negative) while no significant effect on the host membranes (neutral) is observed. No such discrimination was revealed from the compression isotherms. The latter indicate that squeezing the penetrant out of the monolayer upon compression does not allow for establishing the penetration equilibrium, so the monolayer remains supersaturated with the penetrant and shows an under-equilibrium orientation within the entire compression range, practically.

Funder

Université Henri Poincaré, Nancy, France

Publisher

Hindawi Limited

Subject

Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3