Affiliation:
1. School of Integrated Technology, YICT, Yonsei University, Seoul, Republic of Korea
Abstract
XOR is a special nonlinear problem in artificial intelligence (AI) that resembles multiple real-world nonlinear data distributions. A multiplicative neuron model can solve these problems. However, the multiplicative model has the indigenous problem of backpropagation for densely distributed XOR problems and higher dimensional parity problems. To overcome this issue, we have proposed an enhanced translated multiplicative single neuron model. It can provide desired tessellation surface. We have considered an adaptable scaling factor associated with each input in our proposed model. It helps in achieving optimal scaling factor value for higher dimensional input. The efficacy of the proposed model has been tested by randomly increasing input dimensions for XOR-type data distribution. The proposed model has crisply classified even higher dimensional input in their respective class. Also, the computational complexity is the same as that of the previous multiplicative neuron model. It has shown more than an 80% reduction in absolute loss as compared to the previous neuron model in similar experimental conditions. Therefore, it can be considered as a generalized artificial model (single neuron) with the capability of solving XOR-like real problems.
Funder
National Research Foundation of Korea
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献