Additive Manufacturing Enabled by Electrospinning for Tougher Bio-Inspired Materials

Author:

Agarwal Komal1,Zhou Yinning2,Anwar Ali Hashina Parveen2,Radchenko Ihor2,Baji Avinash13ORCID,Budiman Arief S.2ORCID

Affiliation:

1. Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore 487372

2. Xtreme Materials Laboratory (XML), Singapore University of Technology and Design, Singapore 487372

3. Department of Engineering, School of Engineering and Mathematical Sciences (SEMS), La Trobe University, Bundoora 3086, Australia

Abstract

Nature has taught us fascinating strategies to design materials such that they exhibit superior and novel properties. Shells of mantis club have protein fibres arranged in a 3D helicoidal architecture that give them remarkable strength and toughness, enabling them to absorb high-impact energy. This complex architecture is now possible to replicate with the recent advances in additive manufacturing. In this paper, we used melt electrospinning to fabricate 3D polycaprolactone (PCL) fibrous design to mimic the natural helicoidal structures found in the shells of the mantis shrimp’s dactyl club. To improve the tensile deformation behavior of the structures, the surface of each layer of the samples were treated with carboxyl and amino groups. The toughness of the surface-treated helicoidal sample was found to be two times higher than the surface-treated unidirectional sample and five times higher than the helicoidal sample without surface treatment. Free amino groups (NH2) were introduced on the surface of the fibres and membrane via surface treatment to increase the interaction and adhesion among the different layers of membranes. We believe that this represents a preliminary feasibility in our attempt to mimic the 3D helicoidal architectures at small scales, and we still have room to improve further using even smaller fibre sizes of the modeled architectures. These lightweight synthetic analogue materials enabled by electrospinning as an additive manufacturing methodology would potentially display superior structural properties and functionalities such as high strength and extreme toughness.

Funder

SUTD-MIT International Design Centre (IDC)

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3