Multi-Slice Spiral Computed Tomography Image Features under Hybrid Iterative Reconstruction Algorithm in Staging Diagnosis of Bladder Cancer

Author:

Zang Lan1ORCID

Affiliation:

1. Department of Radiology, Hangzhou Future Sci-tech City Hospital, Hangzhou 311100, Zhejiang, China

Abstract

Objective. This study was aimed to explore the accuracy of multi-slice spiral computed tomography (CT) scan in preoperative staging diagnosis of bladder cancer based on hybrid iterative reconstruction algorithm, so as to provide a more reasonable supporting basis for guiding clinical work in the future. Methods. Retrospectively, 120 patients admitted to hospital from July 2019 to April 2021, who were confirmed to be with urothelial carcinoma of the bladder by pathological examination after surgical treatment, were selected. CT images before processing were set as the control group and those after processing were set as the observation group according to whether they were processed by the hybrid iterative algorithm. Postoperative pathological examination was utilized as the standard for analysis. The accuracy and consistency of the two methods were compared. Results. The accuracy of the results of each stage of the observation group (T1 stage: 91.09%, T2 stage: 89.66%, T3 stage: 88.89%, and T4 stage: 88.89%) and consistency (T1 stage: 0.66, T2 stage: 0.69, T3 stage: 0.71, and T4 stage: 0.82) were higher than those of the control group (accuracy: T1—57.01%, T2—48.28%, T3—44.44%, and T4—44.44%). The consistency was as follows: T1—0.32, T2—0.24, T3—0.37, and T4—0.43, and the comparison was statistically significant ( P  < 0.05). Conclusion. The adoption value of the image features based on the hybrid iterative reconstruction algorithm in the diagnosis of bladder cancer staging was higher than that of the conventional multi-slice spiral CT, indicating that the hybrid iterative reconstruction algorithm had a good adoption prospect in clinical examination.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Reference26 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3