Vibro-Fluidized Bed Drying of Pumpkin Seeds: Assessment of Mathematical and Artificial Neural Network Models for Drying Kinetics

Author:

Dhurve Priyanka1ORCID,Tarafdar Ayon12ORCID,Arora Vinkel Kumar1ORCID

Affiliation:

1. Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India

2. Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India

Abstract

Pumpkin seeds were dried in a vibro-fluidized bed dryer (VFBD) at different temperatures at optimized vibration intensity of 4.26 and 4 m/s air velocity. The drying characteristics were mapped employing semiempirical models and Artificial Neural Network (ANN). Prediction of drying behavior of pumpkin seeds was done using semiempirical models, of which, one was preferred as it indicated the best statistical indicators. Two-term model showed the best fit of data with R2 − 0.999, and lowest χ2 − 1.03 × 10−4 and MSE 7.55 × 10−5. A feedforward backpropagation ANN model was trained by the Levenberg–Marquardt training algorithm using a TANSIGMOID activation function with 2-10-2 topology. Performance assessment of ANN showed better prediction of drying behavior with R2 = 0.9967 and MSE = 5.21 × 10−5 for moisture content, and R2 = 0.9963 and MSE = 2.42 × 10−5 for moisture ratio than mathematical models. In general, the prediction of drying kinetics and other drying parameters was more precise in the ANN technique as compared to semiempirical models. The diffusion coefficient, Biot number, and hm increased from 1.12 × 10−9 ± 3.62 × 10−10 to 1.98 × 10−9 ± 4.61 × 10−10 m2/s, 0.51 ± 0.01 to 0.60 ± 0.01, and 1.49 × 10−7 ± 4.89 × 10−8 to 3.10 × 10−7 ± 7.13 × 10−8 m/s, respectively, as temperature elevated from 40 to 60°C. Arrhenius’s equation was used to the obtain the activation energy of 32.71 ± 1.05 kJ/mol.

Funder

Ministry of Tribal Affairs, Government of India

Publisher

Hindawi Limited

Subject

Safety, Risk, Reliability and Quality,Food Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3