Features of Plasma Electrolytic Formation of Manganese- and Cobalt-Containing Composites on Aluminum Alloys

Author:

Karakurkchi Ann V.1ORCID,Sakhnenko Nykolay D.1ORCID,Ved’ Maryna V.1ORCID,Luhovskyi Ihor S.2,Drobakha Hryhoriy A.2,Mayba Maryna V.1

Affiliation:

1. National Technical University “Kharkiv Polytechnical Institute”, Kyrpychova Str. 2, Kharkiv 61002, Ukraine

2. National Academy of the National Guard of Ukraine, Maidan Zakhysnykiv Ukrainy, 3, Kharkiv 61001, Ukraine

Abstract

This paper presents the results of studies on the electrochemical treatment characteristics of aluminum and alloys in alkaline electrolytes. It is shown that the heterogeneity of the alloys composition complicates the formation of the surface oxide layer. To homogenize the treated surface and obtain oxide coatings doped with manganese and cobalt, electrolytes based on KOH and K4P2O7 with the addition of KMnO4 and CoSO4 were used. Plasma electrolytic oxidizing (PEO) in these electrolytes in the range of current densities 5–20 A/dm2 allows to obtain mixed oxide coatings which contained both aluminum oxide matrix and doping metal oxides Al2O3·MnOx and Al2O3·CoOy. It is shown that an increase in the PEO current density and the concentration of manganate- and cobalt(II) ions in the solution leads to an increase the content of dopant metals in the coatings outer layer. The incorporation of manganese and cobalt oxides in the composition of the surface layers was confirmed by the results of X-ray structural analysis. The rational modes of aluminum alloys PEO treatment were substantiated to obtain coatings with manganese and cobalt contents up to 25–40 аt.%. Formed oxide systems have a developed surface and high adhesion to the base metal and show an increased corrosion resistance and catalytic activity. This allows us to view them as promising materials for air- and water-cleaning technologies and internal combustion engine waste gas purification systems.

Funder

Ministry of Education and Science of Ukraine

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3