Affiliation:
1. Shandong University of Science and Technology, Qingdao 266590, China
2. Qingdao City Planning and Design Institute, Qingdao 266071, China
3. Ocean University of China, Qingdao 266100, China
Abstract
Household traffic surveys are widely used in travel behavior analysis, especially in travel time and distance analysis. Unfortunately, any one kind of household traffic surveys has its own problems. Even all household traffic survey data is accurate, it is difficult to get the trip routes information. To our delight, electric map API (e.g., Google Maps, Apple Maps, Baidu Maps, and Auto Navi Maps) could provide the trip route and time information, which remedies the traditional traffic survey’s defect. Thus, we can take advantage of the two kinds of data and integrate them into travel behavior analysis. In order to test the validity of the Baidu electric map API data, a field study on 300 taxi OD pairs is carried out. According to statistical analysis, the average matching rate of total OD pairs is 90.74%, which reflects high accuracy of electric map API data. Based on the fused data of household traffic survey and electric map API, travel behavior on trip time and distance is analyzed. Results show that most purposes’ trip distances distributions are concentrated, which are no more than 10 kilometers. It is worth noting that students have the shortest travel distance and company business’s travel distance distribution is dispersed, which has the longest travel distance. Compared to travel distance, the standard deviations of all purposes’ travel time are greater than the travel distance. Car users have longer travel distance than bus travelers, and their average travel distance is 8.58km.
Funder
National Natural Science Foundation of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献