Travel Behavior Analysis Using 2016 Qingdao’s Household Traffic Surveys and Baidu Electric Map API Data

Author:

Gao Ge1ORCID,Wang Zhen2,Liu Xinmin1,Li Qing1ORCID,Wang Wei3ORCID,Zhang Junyou1

Affiliation:

1. Shandong University of Science and Technology, Qingdao 266590, China

2. Qingdao City Planning and Design Institute, Qingdao 266071, China

3. Ocean University of China, Qingdao 266100, China

Abstract

Household traffic surveys are widely used in travel behavior analysis, especially in travel time and distance analysis. Unfortunately, any one kind of household traffic surveys has its own problems. Even all household traffic survey data is accurate, it is difficult to get the trip routes information. To our delight, electric map API (e.g., Google Maps, Apple Maps, Baidu Maps, and Auto Navi Maps) could provide the trip route and time information, which remedies the traditional traffic survey’s defect. Thus, we can take advantage of the two kinds of data and integrate them into travel behavior analysis. In order to test the validity of the Baidu electric map API data, a field study on 300 taxi OD pairs is carried out. According to statistical analysis, the average matching rate of total OD pairs is 90.74%, which reflects high accuracy of electric map API data. Based on the fused data of household traffic survey and electric map API, travel behavior on trip time and distance is analyzed. Results show that most purposes’ trip distances distributions are concentrated, which are no more than 10 kilometers. It is worth noting that students have the shortest travel distance and company business’s travel distance distribution is dispersed, which has the longest travel distance. Compared to travel distance, the standard deviations of all purposes’ travel time are greater than the travel distance. Car users have longer travel distance than bus travelers, and their average travel distance is 8.58km.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3