Optimal Design of a Dragonfly-Inspired Compliant Joint for Camera Positioning System of Nanoindentation Tester Based on a Hybrid Integration of Jaya-ANFIS

Author:

Chau Ngoc Le1,Dao Thanh-Phong23ORCID,Nguyen Van Thanh Tien1

Affiliation:

1. Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

2. Division of Computational Mechatronics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam

3. Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abstract

Camera positioning system is a critical member of a nanoindentation tester characterizing the mechanical properties such as hardness, creep, surface roughness, or elastic modulus of a material sample. This paper presents a design optimization for a dragonfly-inspired compliant joint. This joint is used to drive the camera positioning system. A new hybrid approach of Taguchi method, adaptive neuro-fuzzy inference system (ANFIS), and Jaya algorithm is developed to solve the multi-objective optimization problem. The Taguchi method is used to build the numerical data and to find the best membership functions for the ANFIS structure by minimizing the root mean squared error. Then, the weight factor of each objective function is determined by established equations well. Subsequently, a structure of ANFIS is developed to map the design parameters and responses. Sensitivity analysis of each controllable parameter is analyzed by the statistical method. Finally, Jaya algorithm is initialized to find the optimal solution. The results found that the optimal displacement, frequency, and stress are about 12581.11 μm, 67.76 Hz, and 333.68 MPa, respectively. The proposed hybrid optimization algorithm is a robust and effective optimizer and considered as soft computing technique for engineering optimization problems.

Funder

National Foundation for Science and Technology Development

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3