Affiliation:
1. School of Civil and Architecture Engineering, Xi’an Technological University, Xi’an 710032, China
Abstract
Risk assessment for tunnel portals in the construction stage has been widely recognized as one of the most critical phases in tunnel construction as it easily causes accident than the overall length of a tunnel. However, the risk in tunnel portal construction is complicated and uncertain which has made such a neural network very attractive to the construction projects. This paper presents a risk evaluation model, which is obtained from historical data of 50 tunnels, by combining the fuzzy method and BP neural network. The proposed model is used for the risk assessment of the Tiefodian tunnel. The results show that the risk evaluation level is IV, slope instability is the greatest impact index among four risk events, and the major risk factors are confirmed. According to the evaluation results, corresponding risk control measures are suggested and implemented. Finally, numerical simulation is carried out before and after the implementation of risk measures, respectively. The rationality of the proposed risk evaluation model is proved by comparing the numerical simulation results.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献