Achievable Rates of Gaussian Interference Channel with Multi-Layer Rate-Splitting and Successive Simple Decoding

Author:

Yu Hanxiao1ORCID,Fei Zesong1ORCID

Affiliation:

1. School of Information and Electronics, Beijing Institute of Technology, Beijing, China

Abstract

The capacity bound of the Gaussian interference channel (IC) has received extensive research interests in recent years. Since the IC model consists of multiple transmitters and multiple receivers, its exact capacity region is generally unknown. One well-known capacity achieving method in IC is Han-Kobayashi (H-K) scheme, which applies two-layer rate-splitting (RS) and simultaneous decoding (SD) as the pivotal techniques and is proven to achieve the IC capacity region within 1 bit. However, the computational complexity of SD grows exponentially with the number of independent signal layers, which is not affordable in practice. To this end, we propose a scheme which employs multi-layer RS at the transmitters and successive simple decoding (SSD) at the receivers in the two-transmitter and two-receiver IC model and then study the achievable sum capacity of this scheme. Compared with the complicated SD, SSD regards interference as noise and thus has linear complexity. We first analyze the asymptotic achievable sum capacity of IC with equal-power multi-layer RS and SSD, where the number of layers approaches to infinity. Specifically, we derive the closed-form expression of the achievable sum capacity of the proposed scheme in symmetric IC, where the proposed scheme only suffers from a little capacity loss compared with SD. We then present the achievable sum capacity with finite-layer RS and SSD. We also derive the sufficient conditions where employing finite-layer RS may even achieve larger sum capacity than that with infinite-layer RS. Finally, numerical simulations are proposed to validate that multi-layer RS and SSD are not generally weaker than SD with respect to the achievable sum capacity, at least for some certain channel gain conditions of IC.

Funder

Beijing Major Science and Technology Projects

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3