Affiliation:
1. Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045, USA
Abstract
The high resolution of multidimensional space-time measurements and enormity of data readout counts in applications such as particle tracking in high-energy physics (HEP) is becoming nowadays a major challenge. In this work, we propose combining dimension reduction techniques with quantum information processing for application in domains that generate large volumes of data such as HEP. More specifically, we propose using quantum wavelet transform (QWT) to reduce the dimensionality of high spatial resolution data. The quantum wavelet transform takes advantage of the principles of quantum mechanics to achieve reductions in computation time while processing exponentially larger amount of information. We develop simpler and optimized emulation architectures than what has been previously reported, to perform quantum wavelet transform on high-resolution data. We also implement the inverse quantum wavelet transform (IQWT) to accurately reconstruct the data without any losses. The algorithms are prototyped on an FPGA-based quantum emulator that supports double-precision floating-point computations. Experimental work has been performed using high-resolution image data on a state-of-the-art multinode high-performance reconfigurable computer. The experimental results show that the proposed concepts represent a feasible approach to reducing dimensionality of high spatial resolution data generated by applications such as particle tracking in high-energy physics.
Subject
Hardware and Architecture
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献