Affiliation:
1. Alexandria Higher Institute of Engineering & Technology (AIET), Alexandria 21311, Egypt
2. Alexandria National Refining & Petrochemicals Co. (ANRPC), Alexandria 23111, Egypt
Abstract
Approximately 40% of global CO2emissions are emitted from electricity generation through the combustion of fossil fuels to generate heat needed to power steam turbines. Burning these fuels results in the production of carbon dioxide (CO2)—the primary heat-trapping, “greenhouse gas” responsible for global warming. Applying smart electric grid technologies can potentially reduce CO2emissions. Electric grid comprises three major sectors: generation, transmission and distribution grid, and consumption. Smart generation includes the use of renewable energy sources (wind, solar, or hydropower). Smart transmission and distribution relies on optimizing the existing assets of overhead transmission lines, underground cables, transformers, and substations such that minimum generating capacities are required in the future. Smart consumption will depend on the use of more efficient equipment like energy-saving lighting lamps, enabling smart homes and hybrid plug-in electric vehicles technologies. A special interest is given to the Egyptian case study. Main opportunities for Egypt include generating electricity from wind and solar energy sources and its geographical location that makes it a perfect center for interconnecting electrical systems from the Nile basin, North Africa, Gulf, and Europe. Challenges include shortage of investments, absence of political will, aging of transmission and distribution infrastructure, and lack of consumer awareness for power utilization.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献