Reducing Carbon Dioxide Emissions from Electricity Sector Using Smart Electric Grid Applications

Author:

Abdallah Lamiaa1ORCID,El-Shennawy Tarek2ORCID

Affiliation:

1. Alexandria Higher Institute of Engineering & Technology (AIET), Alexandria 21311, Egypt

2. Alexandria National Refining & Petrochemicals Co. (ANRPC), Alexandria 23111, Egypt

Abstract

Approximately 40% of global CO2emissions are emitted from electricity generation through the combustion of fossil fuels to generate heat needed to power steam turbines. Burning these fuels results in the production of carbon dioxide (CO2)—the primary heat-trapping, “greenhouse gas” responsible for global warming. Applying smart electric grid technologies can potentially reduce CO2emissions. Electric grid comprises three major sectors: generation, transmission and distribution grid, and consumption. Smart generation includes the use of renewable energy sources (wind, solar, or hydropower). Smart transmission and distribution relies on optimizing the existing assets of overhead transmission lines, underground cables, transformers, and substations such that minimum generating capacities are required in the future. Smart consumption will depend on the use of more efficient equipment like energy-saving lighting lamps, enabling smart homes and hybrid plug-in electric vehicles technologies. A special interest is given to the Egyptian case study. Main opportunities for Egypt include generating electricity from wind and solar energy sources and its geographical location that makes it a perfect center for interconnecting electrical systems from the Nile basin, North Africa, Gulf, and Europe. Challenges include shortage of investments, absence of political will, aging of transmission and distribution infrastructure, and lack of consumer awareness for power utilization.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3