Experimental Study and Numerical Simulation Analysis on Reinforcement of Mortise-Tenon Joints with Flat Steel Strips

Author:

Gan Shurong12ORCID,Pan Wen12,Su Hexian12ORCID,Jin Yucheng12,Zhu Chuanwei12,Yu Shibin12

Affiliation:

1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China

2. Earthquake Engineering Researching Center of Yunnan, Kunming University of Science and Technology, Kunming 650500, China

Abstract

To study the aseismic performance after the reinforcement of the mortise-tenon joints of folk houses with traditional Chuan-Dou style wood structure and their steel plate, test specimens of joints—two for Tou mortise-tenon joints, two for Ban mortise-tenon joints, and two for dovetail mortise-tenon joints—were fabricated out of hemlock, and steel plates were utilized to reinforce one of the joint specimens of each type on the middle part of the mortise-tenon joint. By carrying out pseudo-static tests on the joints and building ABAQUS numerical model; the position where the mortise-tenon joints were to be reinforced by the steel plates was optimized for a comparative analysis into the test results on reinforced and unreinforced mortise-tenon joints and the numerically simulated bending moment-turning angle hysteresis curve, skeleton curve, energy-dissipating capacity, and rigidity degeneration curves. The results showed the following: the pulling-out phenomenon of tenons was severe, and the aseismic performance of Tou tenons was superior to Ban tenons and dovetail tenons; reinforcing the middle part of mortise-tenon joints with steel plates could effectively reduce the pulling-out amount of joints and promote the aseismic performance of mortise-tenon joints but have an insignificant promotive effect for the bearing capacity of Tou mortise-tenon joints; the aseismic performance was improved significantly after the flat steel strip reinforced position was moved to the upper and lower ends of mortise-tenon joints, with the ultimate bearing capacities being 1.5∼2.4 times that on the middle part of flat steel strip reinforced joints.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference38 articles.

1. Finite element modelling of anisotropic elasto-plastic timber composite beams with openings

2. Modern structural wood products

3. Nonlinear finite element modeling of crack behavior in oriented strand board webbed wood i-beams with openings;Z. W. Guan;Journal of Structural Engineering,2004

4. A seismic characteristics of bucket arch and moruise-tenon joint of ancient Chinese timber buildings: experimental research;D. F. Gao;Journal of Natural Disasters,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3