Conditional Moment Closure Modelling of a Lifted H2/N2Turbulent Jet Flame Using the Presumed Mapping Function Approach

Author:

El Sayed Ahmad12,Fraser Roydon A.1

Affiliation:

1. Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1

2. Institut de Combustion Aérothermique Réactivité et Environnement (CNRS), 1C avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France

Abstract

A lifted hydrogen/nitrogen turbulent jet flame issuing into a vitiated coflow is investigated using the conditional moment closure (CMC) supplemented by the presumed mapping function (PMF) approach for the modelling of conditional mixing and velocity statistics. Using a prescribed reference field, the PMF approach yields a presumed probability density function (PDF) for the mixture fraction, which is then used in closing the conditional scalar dissipation rate (CSDR) and conditional velocity in a fully consistent manner. These closures are applied to a lifted flame and the findings are compared to previous results obtained usingβ-PDF-based closures over a range of coflow temperatures (Tc). The PMF results are in line with those of theβ-PDF and compare well to measurements. The transport budgets in mixture fraction and physical spaces and the radical history ahead of the stabilisation height indicate that the stabilisation mechanism is susceptible toTc. As in the previousβ-PDF calculations, autoignition around the “most reactive” mixture fraction remains the controlling mechanism for sufficiently highTc. Departure from theβ-PDF predictions is observed whenTcis decreased as PMF predicts stabilisation by means of premixed flame propagation. This conclusion is based on the observation that lean mixtures are heated by downstream burning mixtures in a preheat zone developing ahead of the stabilization height. The spurious sources, which stem from inconsistent CSDR modelling, are further investigated. The findings reveal that their effect is small but nonnegligible, most notably within the flame zone.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Condensed Matter Physics,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3