Construction of a Computer-Aided Analysis System for Orthopedic Diseases Based on High-Frequency Ultrasound Images

Author:

Xiu Feifei1,Rong Guishan2,Zhang Tao2ORCID

Affiliation:

1. Ultrasound Department, The Fourth People’s Hospital of Langfang, Langfang, Hebei, China

2. Second Department of Orthopedics, The Fourth People’s Hospital of Langfang, Langfang, Hebei, China

Abstract

The area of medical diagnosis has been transformed by computer-aided diagnosis (CAD). With the advancement of technology and the widespread availability of medical data, CAD has gotten a lot of attention, and numerous methods for predicting different pathological diseases have been created. Ultrasound (US) is the safest clinical imaging method; therefore, it is widely utilized in medical and healthcare settings with computer-aided systems. However, owing to patient movement and equipment constraints, certain artefacts make identification of these US pictures challenging. To enhance the quality of pictures for classification and segmentation, certain preprocessing techniques are required. Hence, we proposed a three-stage image segmentation method using U-Net and Iterative Random Forest Classifier (IRFC) to detect orthopedic diseases in ultrasound images efficiently. Initially, the input dataset is preprocessed using Enhanced Wiener Filter for image denoising and image enhancement. Then, the proposed segmentation method is applied. Feature extraction is performed by transform-based analysis. Finally, obtained features are reduced to optimal subset using Principal Component Analysis (PCA). The classification is done using the proposed Iterative Random Forest Classifier. The proposed method is compared with the conventional performance measures like accuracy, specificity, sensitivity, and dice score. The proposed method is proved to be efficient for detecting orthopedic diseases in ultrasound images than the conventional methods.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3