Biochemical Evaluation and Green Synthesis of Nano Silver Using Peroxidase fromEuphorbia(Euphorbia amygdaloides) and Its Antibacterial Activity

Author:

Cicek Semra12,Gungor Azize Alaylı3,Adiguzel Ahmet4,Nadaroglu Hayrunnisa15

Affiliation:

1. Department of Nanoscience and Nanoengineering, Faculty of Engineering, Ataturk University, 25240 Erzurum, Turkey

2. Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey

3. Department of Chemical Technology, Erzurum Vocational Training School, Ataturk University, 25240 Erzurum, Turkey

4. Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey

5. Department of Food Technology, Erzurum Vocational Training School, Ataturk University, 25240 Erzurum, Turkey

Abstract

Silver nanoparticles are used an increased attention for various biomedical and medical applications. In this study, green synthesis of silver nanoparticles was made with simple method by using peroxidase enzyme partially purified fromEuphorbia(Euphorbia amygdaloides) plant. Optimum pH, temperature and time period were determined to obtain silver nanoparticles using the peroxidase enzyme. The result shows that higher silver nanoparticle was synthesized for 4 hours and at 20°C and pH 8. Also, optimal concentration of metal ions was found as 0.5 mM. The synthesized silver nanoparticles were characterized by UV spectrum, scanning electron microscope (SEM) and X-ray diffraction. Antibacterial activity of silver nanoparticles was measured against some microorganisms such asSerratia marcescens, Yersinia pseudotuberculosis, Klebsiella pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, Pseudomonas aeruginosa, Salmonella typhimurium, Listeria monocytogenes, and Escherichia coli. Synthesized silver nanoparticles have wide spectrum antibacterial activity in low concentration and may be a good alternative therapeutic approach in medicine and pharmaceutical fields in future.

Funder

Research Development Centre of Ataturk University

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3