Evaluation of Single-Impact-Induced Cartilage Degeneration by Optical Coherence Tomography

Author:

de Bont Florence1,Brill Nicolai2,Schmitt Robert23,Tingart Markus1,Rath Björn1,Pufe Thomas4,Jahr Holger1,Nebelung Sven14

Affiliation:

1. Department of Orthopaedics, Aachen University Hospital, 52074 Aachen, Germany

2. Fraunhofer Institute for Production Technology, Aachen, Germany

3. Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, 52074 Aachen, Germany

4. Institute of Anatomy and Cell Biology, RWTH Aachen University, 52074 Aachen, Germany

Abstract

Posttraumatic osteoarthritis constitutes a major cause of disability in our increasingly elderly population. Unfortunately, current imaging modalities are too insensitive to detect early degenerative changes of this disease. Optical coherence tomography (OCT) is a promising nondestructive imaging technique that allows surface and subsurface imaging of cartilage, at near-histological resolution, and is principally applicablein vivoduring arthroscopy. Thirty-four macroscopically normal human cartilage-bone samples obtained from total joint replacements were subjected to standardized single impactsin vitro(range: 0.25 J to 0.98 J). 3D OCT measurements of impact area and adjacent tissue were performed prior to impaction, directly after impaction, and 1, 4, and 8 days later. OCT images were assessed qualitatively (DJD classification) and quantitatively using established parameters (OII, Optical Irregularity Index; OHI, Optical Homogeneity Index; OAI, Optical Attenuation Index) and compared to corresponding histological sections. WhileOAIandOHIscores were not significantly changed in response to low- or moderate-impact energies, high-impact energies significantly increased mean DJD grades (histology and OCT) andOIIscores. In conclusion, OCT-based parameterization and quantification are able to reliably detect loss of cartilage surface integrity after high-energy traumatic insults and hold potential to be used for clinical screening of early osteoarthritis.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3