Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering

Author:

Vianney Kinani Jean Marie1,Rosales Silva Alberto Jorge2ORCID,Gallegos Funes Francisco2,Mújica Vargas Dante3,Ramos Díaz Eduardo4,Arellano Alfonso5

Affiliation:

1. Instituto Tecnológico Superior de Huichapan, Domicilio Conocido S/N, Col. El Saucillo, 42411 Huichapan, HGO, Mexico

2. Instituto Politécnico Nacional de México, Avenida IPN s/n, Edificio Z, Acceso 3, 3er piso, SEPI-Electrónica, Col. Lindavista, 07738 Ciudad de México, Mexico

3. Centro Nacional de Investigación y Desarrollo Tecnológico, Interior Internado Palmira S/N, Palmira, 62490 Cuernavaca, MOR, Mexico

4. Universidad Autónoma de la Ciudad de México, Calle Prolongación San Isidro 151, Iztapalapa, San Lorenzo Tezonco, 09790 Ciudad de México, Mexico

5. Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur 3877, Col. La Farma, 14269 Ciudad de México, Mexico

Abstract

We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery (FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time.

Funder

CONACyT de México

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3