The Deformation, Failure Mechanisms, and Stability Control of the Surrounding Rock of Deep Cross-Measure Roadway: A Case Study

Author:

Du Wenzheng1ORCID,Pan Rui1ORCID,Sun Hongjin1

Affiliation:

1. Anhui Province Key Laboratory of Building Structure and Underground Engineering, Anhui Jianzhu University, Hefei 230601, China

Abstract

In view of the difficulty in controlling the surrounding rock stability of deep cross-measure roadways, a deep cross-measure roadway of the Wanfu coal mine, a typical high-stress mine, was monitored on site and analyzed under the original support scheme. The findings show that the degrees of deformation and failure of the cross-measure roadway varied under different working conditions and that the roadway deformation and failure were mainly characterized by a high fragmentation degree and a large failure range of the surrounding rock and the frequent failure of support components. Considering that the different parts of the cross-measure roadway are located in different lithostratigraphic units, establishing a numerical model of the cross-measure roadway under different working conditions; analyzing the deformation pattern of the surrounding rock of the roadway, the plastic range, and the morphological change pattern; and clarifying the deformation and failure mechanisms of the cross-measure roadway based on field monitoring results. On this basis, two types of evaluation indicators, that is, the deformations of the surrounding rock and the plastic ranges in the four typical parts (roof, shoulder, floor, and sidewalls) of the roadway, were selected to rate the stability of the roadway under different working conditions. Grouting reinforcement-based targeted control countermeasures are proposed to improve the surrounding rock stability. Subsequently, numerical analysis and field application of these control countermeasures were carried out to solve the problem of controlling the surrounding rock stability of deep cross-measure roadways.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3