Numerical Simulation of a Floating Offshore Wind Turbine Incorporating an Electromagnetic Inerter-Based Device for Vibration Suppression and Wave Energy Conversion

Author:

Asai Takehiko1ORCID,Tsukamoto Shota2,Nemoto Yudai3,Yoshimizu Kenji3,Watanabe Urara3,Taniyama Yoshihiro3

Affiliation:

1. Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki, Japan

2. Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan

3. Energy Systems Research and Development Center, Toshiba Energy Systems & Solutions Corporation, Kanagawa, Japan

Abstract

Offshore wind turbines (OWTs) are considered vital to the promotion of the development of renewable energy. Especially, floating OWTs can be deployed over a larger area than bottom-fixed OWTs. The floating OWTs, however, are vulnerable to vibration induced by disturbances and require a backup power supply in the case of power outage. On the one hand, various kinds of inerter-based devices have been proposed especially for vibration suppression of civil structures subjected to earthquake loadings. Recently, combined with electromagnetic devices, the inerter technologies have also been applied in the field of vibration energy harvesting such as point absorber wave energy converters. Thus, this paper proposes a novel floating OWT consisting of two bodies combined with inerter-based power take-off (PTO) devices which accomplishes vibration suppression and wave energy conversion at the same time. To investigate the vibration suppression and energy conversion capabilities of the proposed floating OWT with a variety of inerter-based PTO devices for ocean waves, numerical simulation studies employing WEC-Sim are conducted, and the performance of each system is compared for regular and irregular waves. Results show that the proposed floating OWT with the appropriately designed inerter-based PTO devices for the incident wave period has great potential for both vibration suppression and wave energy conversion in a specific frequency range.

Funder

Japan Science and Technology Agency

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3