lnc-MRGPRF-6:1 Promotes ox-LDL-Induced Macrophage Ferroptosis via Suppressing GPX4

Author:

You Zhihuan1ORCID,Ye Xiaotian1,Jiang Meihua2ORCID,Gu Ning3ORCID,Liang Caihong1ORCID

Affiliation:

1. Department of Cardiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China

2. Department of Geriatrics, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China

3. Department of Cardiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China

Abstract

Background. Ferroptosis, a newly discovered mode of cell death, emerges as a new target for atherosclerosis (AS). Long noncoding RNAs (lncRNAs) are involved in the regulation of ferroptosis. In our previous study, lnc-MRGPRF-6:1 was highly expressed in patients with coronary atherosclerotic disease (CAD) and closely associated with macrophage-mediated inflammation in AS. In the present study, we aim to investigate the role of lnc-MRGPRF-6:1 in oxidized-low-density lipoprotein (ox-LDL)-induced macrophage ferroptosis in AS. Methods. Firstly, ox-LDL-treated macrophages were used to simulate macrophage injury in AS. Then, ferroptosis-related biomarkers and mitochondrial morphology were detected and observed in ox-LDL-treated macrophages. Subsequently, we constructed lnc-MRGPRF-6:1 knockdown and overexpression of THP-1-derived macrophages and investigated the role of lnc-MRGPRF-6:1 in ox-LDL-induced ferroptosis. Then human monocytes were isolated successfully and were used to explore the role of lnc-MRGPRF-6:1 in macrophage ferroptosis. Likely, we constructed lnc-MRGPRF-6:1 knockdown and overexpression of human monocyte-derived macrophages and detected the expression levels of ferroptosis-related biomarkers. Then, transcriptome sequencing, literature searching, and following quantitative real-time polymerase chain reaction and western blot were implemented to explore specific signaling pathway in the process. It was demonstrated that lnc-MRGPRF-6:1 may regulate ox-LDL-induced macrophage ferroptosis through glutathione peroxidase 4 (GPX4). Eventually, the correlation between lnc-MRGPRF-6:1 and GPX4 was measured in monocyte-derived macrophages of CAD patients and controls. Results. The ox-LDL-induced injury in macrophages was involved in ferroptosis. The knockdown of lnc-MRGPRF-6:1 could alleviate ox-LDL-induced ferroptosis in macrophages. Meanwhile, the overexpression of lnc-MRGPRF-6:1 could intensify ox-LDL-induced ferroptosis. Furthermore, the knockdown of lnc-MRGPRF-6:1 could alleviate the decrease of GPX4 induced by RAS-selective lethal compounds 3 (RSL-3). These indicated that lnc-MRGPRF-6:1 may suppress GPX4 to induce macrophage ferroptosis. Eventually, lnc-MRGPRF-6:1 was highly expressed in the monocyte-derived macrophages of CAD patients and was negatively correlated with the expression of GPX4. Conclusion. lnc-MRGPRF-6:1 can promote ox-LDL-induced macrophage ferroptosis through inhibiting GPX4.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3