Hemodynamic-Based Evaluation on Thrombosis Risk of Fusiform Coronary Artery Aneurysms Using Computational Fluid Dynamic Simulation Method

Author:

Wang Haoran12,Anzai Hitomi1,Liu Youjun3,Qiao Aike3ORCID,Xie Jinsheng4,Ohta Makoto15ORCID

Affiliation:

1. Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai, Miyagi 980-8577, Japan

2. Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aramaki-Aza-Aoba, Aoba-Ku, Sendai, Miyagi 980-8579, Japan

3. College of Life Science and Bioengineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100022, China

4. Department of Cardiac Surgery, Beijing Anzhen Hospital Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China

5. ELyTMaX UMI 3757, CNRS–Université de Lyon, Tohoku University, Sendai, Japan

Abstract

Coronary artery aneurysms (CAAs) have been reported to associate with an increased risk for thrombosis. Distinct to the brain aneurysm, which can cause a rupture, CAA’s threat is more about its potential to induce thrombosis, leading to myocardial infarction. Case reports suggest that thrombosis risk varied with the different CAA diameters and hemodynamics effects (usually wall shear stress (WSS), oscillatory shear index (OSI), and relative residence time (RRT)) may relate to the thrombosis risk. However, currently, due to the rareness of the disease, there is limited knowledge of the hemodynamics effects of CAA. The aim of the study was to estimate the relationship between hemodynamic effects and different diameters of CAAs. Computational fluid dynamics (CFD) provides a noninvasive means of hemodynamic research. Four three-dimensional models were constructed, representing coronary arteries with a normal diameter (1x) and CAAs with diameters two (2x), three (3x), and five times (5x) that of the normal diameter. A lumped parameter model (LPM) which can capture the feature of coronary blood flow supplied the boundary conditions. WSS in the aneurysm decreased 97.7% apparently from 3.51 Pa (1x) to 0.08 Pa (5x). OSI and RRT in the aneurysm were increased apparently by two orders of magnitude from 0.01 (1x) to 0.30 (5x), and from 0.38 Pa−1 (1x) to 51.59 Pa−1 (5x), separately. Changes in the local volume of the CAA resulted in dramatic changes in local hemodynamic parameters. The findings demonstrated that thrombosis risk increased with increasing diameter and was strongly exacerbated at larger diameters of CAA. The 2x model exhibited the lowest thrombosis risk among the models, suggesting the low-damage (medication) treatment may work. High-damage (surgery) treatment may need to be considered when CAA diameter is 3 times or higher. This diameter classification method may be a good example for constructing a more complex hemodynamic-based risk stratification method and could support clinical decision-making in the assessment of CAA.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3