Affiliation:
1. Faculty of Science and Technology, Charles Darwin University, Purple 12, Darwin, NT 0909, Australia
2. Energy and Resources Institute, Charles Darwin University, Darwin, NT 0909, Australia
Abstract
Using the density functional theory (DFT), the influence of substitution of electron-donating (OCH3 and OH) and electron-accepting (F and Cl) groups on the peripheral thiophene units of DRTB-T donor molecule is studied. By optimizing the geometric structure, HOMO and LUMO energies, reorganization energies, optical properties, and photovoltaic properties are simulated. It is found that the ionization potential of the electron-donating derivatives (DRTB-4OCH3 and DRTB-4OH) reduces, but it increases for the electron-accepting derivatives (DRTB-4F and DRTB-4Cl) in comparison with that of DRTB-T. It is also found that the absorption spectra of the electron-donating derivatives (DRTB-4OCH3 and DRTB-4OH) get redshifted, but these get blue shifted for the electron-accepting derivatives (DRTB-4F and DRTB-4Cl) in comparison with those of DRTB-T. These changes in the electronic and optical properties of the modified structures result in higher PCE in BHJ OSCs with the blended active layer of DRTB-4F: NITI, DRTB-4Cl: NITI, in comparison with that of OSC with the active layer of DRTB-T: NITI and the highest being 15.0% in DRTB-4Cl: NITI. Our results may be expected to provide valuable insights into design optimization, leading to the fabrication of more efficient OSCs.
Funder
Charles Darwin University
Subject
Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献