Pressure-Shear Crack Initiation and Expansion Mechanism of Complex Cracked Rock Mass under the Seepage Stress

Author:

Shen Lu1ORCID

Affiliation:

1. Wanjiang University of Technology, Maanshan 243011, China

Abstract

This work was to analyze and discuss the propagation mechanism of compressive shear initiation of complex fractured rock mass with seepage stress. The dense marble of Daye Iron mine with bulk density of 26.6 kN/m3 and uniaxial compressive strength of 52.4 MPa was selected as the material, and the upper and lower fracture surfaces were polished smoothly. The crack initiation criterion under compressive shear stress state is analyzed by taking the theory of fracture mechanics and classical mechanics. The coupling equation in the extended finite element simulation is established. The influence of lateral pressure on the crack propagation law, the relationship between lateral pressure and fracture, the initial expansion angle and pressure change law, and the effect of working face length on the crack expansion are analyzed. Results. The initial expansion angle of cracks increases with the increase of lateral pressure, and that of a single crack decreases with the increase of pressure. When other conditions are constant, the crack angle of the crevice also shows a trend of increasing with the increase of lateral pressure. When the lateral pressure becomes smaller, the initial expansion angle is relatively small. With the progress of the step size, the expansion angle shows a gradually decreasing trend, that is, the initial expansion angle gradually decreases with the increase of water pressure. The smaller the working face length, the smaller the expansion length of the floor crack. Conclusion. The expansion of the floor cracks is mainly formed by the tensile shear failure, and the fracture water pressure will reduce the initiation stress, which makes the rock mass more prone to the fracture failure.

Funder

Anhui Department of Education

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3