Stock Forecasting Model FS-LSTM Based on the 5G Internet of Things

Author:

Li Hui1ORCID,Hua Jinjin2ORCID,Li Jinqiu1,Li Geng1ORCID

Affiliation:

1. School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

2. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China

Abstract

This paper analyzed the development of data mining and the development of the fifth generation (5G) for the Internet of Things (IoT) and uses a deep learning method for stock forecasting. In order to solve the problems such as low accuracy and training complexity caused by complicated data in stock model forecasting, we proposed a forecasting method based on the feature selection (FS) and Long Short-Term Memory (LSTM) algorithm to predict the closing price of stock. Considering its future potential application, this paper takes 4 stock data from the Shenzhen Component Index as an example and constructs the feature set for prediction based on 17 technical indexes which are commonly used in stock market. The optimal feature set is decided via FS to reduce the dimension of data and the training complexity. The LSTM algorithm is used to forecast closing price of stock. The empirical results show that compared with the LSTM model, the FS-LSTM combination model improves the accuracy of prediction and reduces the error between the real value and the forecast value in stock price prediction.

Funder

Henan Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3