Study on Vortex-Induced Vibration of Deep-Water Marine Drilling Risers in Linearly Sheared Flows in consideration of Changing Added Mass

Author:

Gao Guanghai1ORCID,Cong Xiao2,Cui Yunjing3ORCID,Qiu Xingqi1ORCID

Affiliation:

1. College of New Energy, China University of Petroleum (East China), Qingdao 266580, China

2. Shandong Special Equipment Inspection Institute Co., Ltd., Jinan 250101, China

3. College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

In order to more accurately predict the coupled in-line and cross-flow vortex-induced vibration (VIV) response of deep-water marine drilling risers in linearly sheared flows, an improved three-dimensional time-domain coupled model based on van der Pol wake oscillator models was established in this paper. The impact of the in-line and cross-flow changing added mass coefficients was taken into account in the model. The finite element, Newmark-β, and Newton–Raphson methods were adopted to solve the coupled nonlinear partial differential equations. The entire numerical solution process was realized by a self-developed program based on MATLAB. Comparisons between the numerical calculations and the published experimental tests showed that the improved model can more accurately predict some main features of the coupled in-line and cross-flow VIV of long slender flexible risers in linearly sheared flows to some extent. The coupled in-line and cross-flow VIV of a real-size marine drilling riser, usually used in the deep-water oil/gas industry in the South China Sea, was analyzed. The influence of top tension force and seawater flow speed, as well as platform heave amplitude and frequency, on the riser in-line and cross-flow VIV was also discussed. The results show that the platform heave motion increases the VIV displacements and changes the magnitudes of peak frequencies as well as the components of frequencies. The platform heave motion also has a significant influence on the vibration modes of the middle and upper sections of the riser. The impact level of each factor on the in-line and cross-flow VIV response of the riser is different. The improved model and the results of this paper can be used as a reference for the engineering design of deep-water marine drilling risers.

Funder

National High Technology Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3