Trajectory Mining-Based City-Level Mobility Model for 5G NB-IoT Networks

Author:

Zhang Runzhou12ORCID,Zhong Han12ORCID,Zheng Tongyi12ORCID,Ning Lei1ORCID

Affiliation:

1. College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China

2. College of Applied Technology, Shenzhen University, Shenzhen, China

Abstract

Due to the large coverage of 5G NB-IoT networks, a more realistic mobility model for a macroscopic scene will greatly facilitate the development of optimal radio resource management algorithms. However, models devised for a random motion scene are no longer applicable in circumstances. Therefore, in this paper, a city-level mobility model is proposed based on the feature mining of the real trajectory of vehicles in the city of Shenzhen. The proposed model is separately designed in the motion trajectory to reduce the mutual influence between the time and spatial sequence. Simulation results show that it can better present specific node motions with the physical constraints of the city layout, which are motivated with a high degree of fit in terms of self-similarity, hotspots, and long-tail features.

Funder

SZTU

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3