PRAK Interacts with DJ-1 and Prevents Oxidative Stress-Induced Cell Death

Author:

Tang Jing12,Liu Jinghua1,Li Xue1,Zhong Yuyun1,Zhong Tianyu1ORCID,Liu Yawei1,Wang Jiang Huai3,Jiang Yong1

Affiliation:

1. State Key Laboratory of Organ Failure Research, Key Laboratory of Transcriptomics and Proteomics, Ministry of Education of China, Key Laboratory of Proteomics of Guangdong Province, Southern Medical University, Guangzhou 510515, China

2. Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

3. Department of Surgery, Cork University Hospital, University College Cork, Cork, Ireland

Abstract

As a core member of p38 MAPK signal transduction pathway, p38 regulated/activated kinase (PRAK) is activated by cellular stresses. However, the function of PRAK and its downstream interacting partner remain undefined. Using a yeast two-hybrid system, we identified DJ-1 as a potential PRAK interacting protein. We further verified that DJ-1 bound to PRAKin vitroandin vivoand colocalized with PRAK in the nuclei of NIH3T3 cells. Furthermore, following H2O2stimulation the majority of endogenous DJ-1 in PRAK+/+cells still remained in the nucleus, whereas most DJ-1 in PRAK−/−cells translocated from the nucleus into the cytoplasm, indicating that PRAK is essential for DJ-1 to localize in the nucleus. In addition, PRAK-associated phosphorylation of DJ-1 was observedin vitroandin vivoof H2O2-challenged PRAK+/+cells. Cytoplasmic translocation of DJ-1 in H2O2-treated PRAK−/−cells lost its ability to sequester Daxx, a death protein, in the nucleus, and as a result, Daxx gained access to the cytoplasm and triggered cell death. These data highlight that DJ-1 is the downstream interacting target for PRAK, and in response to oxidative stress PRAK may exert a cytoprotective effect by facilitating DJ-1 to sequester Daxx in the nucleus, thus preventing cell death.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3