Distribution and Drug Resistance of Bacterial Pathogens Associated with Lower Respiratory Tract Infection in Children and the Effect of COVID-19 on the Distribution of Pathogens

Author:

Zhu Xuan1ORCID,Ye Ting2,Zhong Hong1,Luo Yaxuan1,Xu Jian1,Zhang Qin1,Luo Xiaobo3,Wang Qin1ORCID,Zhang Liyuan1,Song Peipei1,Zhang Jun1

Affiliation:

1. Department of Clinical Laboratory, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China

3. Department of Pediatric Hematology and Oncology Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

By studying the distribution and drug resistance of bacterial pathogens associated with lower respiratory tract infection (LRTI) in children in Chengdu and the effect of the COVID-19 on the distribution of pathogens and by analyzing the epidemic trend and drug resistance changes of the main pathogens of LRTI, this research is supposed to provide a useful basis for the prevention of LRTI in children and the rational use of drugs in clinical practice. Hospitalized children clinically diagnosed with LRTI in Chengdu Women and Children’s Central Hospital from 2011 to 2020 were selected as the study subjects. The pathogens of LRTI in children and the distribution of pathogens in different ages, genders, seasons, years, and departments and before and after the pandemic situation of COVID-19 were counted. The drug resistance distribution of the top six pathogens with the highest infection rate in the past three years and the trend of drug resistance in the past decade were analyzed. A total of 26,469 pathogens were isolated. Among them, 6240 strains (23.6%) were Gram-positive bacteria, 20152 strains (76.1%) were Gram-negative bacteria, and 73 strains (0.3%) were fungi. Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, and Staphylococcus aureus were highly isolated in the group of infants aged 0-1 P < 0.01 , Moraxella catarrhalis and Streptococcus pneumoniae were highly isolated in children aged 1–6 P < 0.01 , and Haemophilus influenzae was highly isolated in children over 1 P < 0.01 . The isolation rates of Enterobacteriaceae, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Staphylococcus aureus, and Candida albicans in the lower respiratory tract of 0-1 year-old male infants were higher than those of female infants p < 0.05 . Haemophilus influenzae was highly isolated in spring and summer, and Moraxella catarrhalis was highly isolated in autumn and winter, while the infection of Streptococcus pneumoniae was mainly concentrated in winter. This difference was statistically significant P < 0.01 . Affected by the COVID-19 pandemic, the isolation rates of Haemophilus influenzae and Streptococcus pneumoniae were significantly lower than those before the pandemic, and the isolation rate of Moraxella catarrhalis was significantly higher. The difference was statistically significant P < 0.01 . The proportion of isolated negative bacteria in NICU and PICU was higher than that in positive bacteria, and the infection rates of Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, and Acinetobacter baumannii were higher than those in other departments. The differences were statistically significant P < 0.01 . The results of drug sensitivity test showed that the drug resistance of Haemophilus influenzae and Moraxella catarrhalis was mainly concentrated in Ampicillin, First- and Second-generation cephalosporins, and Cotrimoxazole, with stable sensitivity to Third-generation cephalosporins, while the drug resistance of Streptococcus pneumoniae was concentrated in Macrolides, Sulfonamides, and Tetracyclines, with stable sensitivity to Penicillin. Staphylococcus aureus is highly resistant to penicillins and macrolides and susceptible to vancomycin. Enterobacteriaceae resistance is concentrated in cephalosporins, with a low rate of carbapenem resistance. From 2018 to 2020, 1557 strains of Staphylococcus aureus were isolated, of which 416 strains were MRSA, accounting for 27% of the isolates; 1064 strains of Escherichia coli were isolated, of which 423 strains were ESBL and 23 strains were CRE, accounting for 40% and 2% of the isolates, respectively; and 1400 strains of Klebsiella pneumoniae were isolated, of which 385 strains were ESBL and 402 strains were CRE, accounting for 28% and 29% of the isolates, respectively. Since 2011, the resistance of Escherichia coli and Klebsiella pneumoniae to Third-generation cephalosporins has increased, peaking in 2017, and has decreased after 2018, years after which carbapenem resistance has increased significantly, corresponding to an increase in the detection rate of Carbapenem-resistant Enterobacteriaceae CRE. Findings from this study revealed that there are significant differences in community-associated infectious pathogens before and after the COVID-19 pandemic, and there are significant age differences, seasonal epidemic trends, and high departmental correlation of pathogens related to lower respiratory tract disease infection in children. There was a significant gender difference in the isolation rate of pathogens associated with LRTI in infants under one year. Vaccination, implementation of isolation measures and social distance, strengthening of personal protective measures, aseptic operation of invasive medical treatment, hand hygiene, and environmental disinfection are beneficial to reducing community-associated pathogen infection, opportunistic pathogen infection, and an increase in resistant bacteria. The strengthening of bacterial culture of lower respiratory tract samples by pediatricians is conducive to the diagnosis of respiratory tract infections caused by different pathogens, contributing to the selection of effective drugs for treatment according to drug susceptibility results, which is important for the rational use of antibiotics and curbing bacterial resistance.

Funder

Sichuan Provincial Medical Youth Innovative Scientific Research Foundation of China

Publisher

Hindawi Limited

Subject

Infectious Diseases,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3