Thermo-Structural Behaviour Prediction of the Nose Cap of a Hypersonic Vehicle Based on Multifield Coupling

Author:

Sun Xuewen12ORCID,Yang Haibo123ORCID,Mi Tao14ORCID

Affiliation:

1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Key Laboratory of Fluid Interaction with Material, Ministry of Education, Beijing 100083, China

3. Centre of Excellence for Advanced Materials, Dongguan 523808, China

4. School of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China

Abstract

The analysis of thermo-structural behaviour is crucial to the nose cap of a hypersonic vehicle under aerothermodynamic loads. Considering chemical nonequilibrium of the flow field, heat transfer, and deformation of the structure, a fluid-thermal-structural coupling model of the typical nose cap was established. The coupling relation between the flow field and nose cap was analyzed. The results show that the fluid-thermal-structural model can effectively predict the response of the nose cap under a hypersonic environment. The highest temperature and the peak of maximum principal stress appear at the front of the nose cap at an initial stage. As time goes on, the highest temperature increases gradually and the peak of maximum principal stress decreases after reaching a certain value. The position of the peak of maximum principal stress gradually moves to the inside of the nose cap and eventually stabilizes. With the increase in the Mach number, the highest temperature and the peak of maximum principal stress of the nose cap increase. The fluid-thermal-structural coupling model can provide guidance for the optimal design of the nose cap of a hypersonic vehicle.

Funder

Hebei Science and Technology Department Research Fund

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3