Building Innovative Service Composition Based on Two-Way Selection in Cloud Manufacturing Environment

Author:

Zhao Jinhui1ORCID,Li Muzi2,Zhou Yu3ORCID,Wang Peichong2

Affiliation:

1. Network Information Security Laboratory, Hebei GEO University, Shijiazhuang 050031, China

2. School of Information Engineering, Hebei GEO University, Shijiazhuang 050031, China

3. School of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450011, China

Abstract

In the cloud manufacturing environment, innovative service composition is an important way to improve the capability and efficiency of resource integration and realize the upgrading and transformational upgrade of the manufacturing industry. In order to build a stable innovative service composition, we propose a novel composite model, which uses two-way selection according to their cooperation to recommend the most suitable partners. Firstly, a rough number is applied to quantify the semantic evaluation. Using the expectation of cooperative condition as reference points, prospect theory is then applied to calculate the cooperative desires for both sides based on participants’ psychological attitudes toward gains and losses. Next, the cooperative desires are used to establish the two-way selection model of innovative service composition. The solution is determined by using an improved teaching-learning-based optimization algorithm. Compared with traditional combined methods in the cloud manufacturing environment, the proposed model fully considers the long-neglected needs and interests of service providers. Prospect theory takes psychological expectations and varying attitudes of decision makers towards gains and losses into account. Moreover, an interval rough number is used to better preserve the uncertain information during semantic quantification. Experimental results verify the applicability and effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3