Oscillation and Nonoscillation of Asymptotically Almost Periodic Half-Linear Difference Equations

Author:

Veselý Michal1ORCID,Hasil Petr2ORCID

Affiliation:

1. Department of Mathematics and Statistics, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic

2. Department of Mathematics, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

Abstract

We analyse half-linear difference equations with asymptotically almost periodic coefficients. Using the adapted Riccati transformation, we prove that these equations are conditionally oscillatory. We explicitly find a constant, determined by the coefficients of a given equation, which is the borderline between the oscillation and the nonoscillation of the equation. We also mention corollaries of our result with several examples.

Funder

European Social Fund

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oscillation criterion for generalized Euler difference equations;Acta Mathematica Hungarica;2024-09-06

2. Riccati Transformation and Non-Oscillation Criterion for Half-Linear Difference Equations;Bulletin of the Malaysian Mathematical Sciences Society;2024-07-18

3. Oscillation criterion for Euler type half‐linear difference equations;Mathematical Methods in the Applied Sciences;2023-12-14

4. Oscillation of linear and half-linear difference equations via modified Riccati transformation;Journal of Mathematical Analysis and Applications;2023-12

5. Oscillation and nonoscillation of perturbed nonlinear equations with p‐Laplacian;Mathematische Nachrichten;2023-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3