Beyond AREDS Formulations, What Is Next for Intermediate Age-Related Macular Degeneration (iAMD) Treatment? Potential Benefits of Antioxidant and Anti-inflammatory Apocarotenoids as Neuroprotectors

Author:

Camelo Serge1ORCID,Latil Mathilde1ORCID,Veillet Stanislas1ORCID,Dilda Pierre J.1ORCID,Lafont René12ORCID

Affiliation:

1. Biophytis, Sorbonne Université-BC9, 4 Place Jussieu, 75005 Paris, France

2. Sorbonne Université, CNRS-Institut de Biologie Paris Seine (BIOSIPE), 75005 Paris, France

Abstract

Age-related macular degeneration (AMD) is the commonest cause of severe visual loss and blindness in developed countries among individuals aged 60 and older. AMD slowly progresses from early AMD to intermediate AMD (iAMD) and ultimately late-stage AMD. Late AMD encompasses either neovascular AMD (nAMD) or geographic atrophy (GA). nAMD is defined by choroidal neovascularization (CNV) and hemorrhage in the subretinal space at the level of the macula. This induces a rapid visual impairment caused by the death of photoreceptor cells. Intravitreal injection of anti-vascular endothelial growth factor (VEGF) antibodies is the standard treatment of nAMD but adds to the burden of patient care. GA is characterized by slowly expanding photoreceptor, and retinal pigment epithelium (RPE) degeneration patches progressively leading to blindness. There is currently no therapy to cure GA. Late AMD continues to be an unmet medical need representing a major health problem with millions of patients worldwide. Oxidative stress and inflammation are recognized as some of the main risk factors to developing late AMD. The antioxidant formulation AREDS (Age-Related Eye Disease Studies), contains β-carotene, which has been replaced by lutein and zeaxanthin in AREDS2, are given to patients with iAMD but have a limited effect on the incidence of nAMD and GA. Thus, to avoid or slowdown the development of late stages of AMD (nAMD or GA), new therapies targeting iAMD are needed such as crocetin obtained through hydrolysis of crocin, an important component of saffron (Crocus sativus L.), and norbixin derived from bixin extracted from Bixa orellana seeds. We have shown that these apocarotenoids preserved more effectively RPE cells against apoptosis following blue light exposure in the presence of A2E than lutein and zeaxanthin. In this review, we will discuss the potential use of apocarotenoids to slowdown the progression of iAMD, to reduce the incidence of both forms of late AMD.

Funder

Biophytis

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3