Password Guessing Based on GAN with Gumbel-Softmax

Author:

Zhou Tao1,Wu Hao-Tian1ORCID,Lu Hui2ORCID,Xu Peiming3,Cheung Yiu-Ming4ORCID

Affiliation:

1. School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China

2. Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China

3. Electric Power Research Institute, China Southern Power Grid, Guangzhou, China

4. Department of Computer Science, Hong Kong Baptist University, Hong Kong

Abstract

Password guessing is an important issue in user security and privacy protection. Using generative adversarial network (GAN) to guess passwords is a new strategy emerging in recent years, which exploits the discriminator’s evaluation of passwords to guide the update of the generator so that password guessing sets can be produced. However, the sampling process of discrete data from a categorical distribution is not differentiable so that backpropagation does not work well. In this paper, we propose a novel password guessing model named G-Pass, which consists of two main components. The first is a new network structure, which modifies the generator from the convolutional neural network (CNN) to long short-term memory- (LSTM-) based network and employs multiple convolutional layers in the discriminator to provide more informative signals for generator updating. The second is Gumbel-Softmax with temperature control for training GAN on passwords. Experimental results show the proposed G-Pass outperforms PassGAN in password quality and cracking rate. Moreover, by dynamically adjusting one parameter during the training process, a trade-off between sample diversity and quality can be achieved with our proposed model.

Funder

Special Project for Research and Development in Key areas of Guangdong Province

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3