An Artificial Neural Network-Based Approach to Optimizing Energy Efficiency in Residential Buildings in Hot Summer and Cold Winter Regions

Author:

Gao Mingyue1ORCID

Affiliation:

1. School of Art and Design, Shaanxi Fashion Engineering University, Xi’an, Shaanxi 712046, China

Abstract

Resource depletion and ecological crisis have prompted human beings to reflect on the behavior patterns based on industrial civilization so as to seek ways of sustainable development of human society, economy, technology, and environment. The energy consumed in the construction process, commonly known as building energy consumption, accounts for more and more of the total social energy consumption, and with the continuous development of social economy and the improvement of living standards, this proportion will be larger and larger. The structure of the neural network directly determines its performance and work efficiency. The structure optimization of the neural network is not only a hot issue in this field but also an insurmountable key step in engineering applications. With the increase of network depth, the structural optimization difficulty index of the neural network increases, so solving this problem has important theoretical and practical significance for the design and application of the neural network. In this paper, the energy saving of buildings is optimized based on the optimization of structures such as particle swarm optimization (PSO) algorithm and restricted Boltzmann machine. The experimental results show that the BPNN optimized by the improved PSO algorithm is significantly better than the non-optimized BPNN and the BPNN optimized by the basic PSO algorithm. The comprehensive output rate of the optimized neural network can reach 64.5%. In general, the error rate of the optimized artificial neural network (ANN) will be 57.65% lower than the original one.

Funder

Research on Green Ecological Design and Technology Strategy of Old Community Public Buildings under the Background of State-Owned Factory Transformation

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3