The Use of Artificial Intelligence-Based Optical Remote Sensing and Positioning Technology in Microelectronic Processing Technology

Author:

Yan Chenqi1ORCID,Tan Mengchao1

Affiliation:

1. Tangshan Normal University, Tangshan, Hebei, China

Abstract

The purpose is to make defect detection in microelectronic processing technology fast, accurate, reliable, and efficient. A new optical remote sensing-optical beam induced resistance change (ORS-OBIRCH) target recognition and location defect detection method is proposed based on an artificial intelligence algorithm, optical remote sensing (ORS), and optical beam induced resistance change (OBIRCH) location technology using deep convolutional neural network. This method integrates the characteristics of high resolution and rich details of the image obtained by ORS technology and combines the advantages of photosensitive temperature characteristics in OBIRCH positioning technology. It can be adopted to identify, capture, and locate the defects of microdevices in the process of microelectronic processing. Simulation results show that this method can quickly reduce the detection range and locate defects accurately and efficiently. The experimental results reveal that the ORS-OBIRCH target recognition defect location detection method can complete the dynamic synchronization of the IC detection system and obtain high-quality images by changing the laser beam irradiation cycle. Moreover, it can analyze and process the detection results to quickly, accurately, and efficiently locate the defect location. Unlike the traditional detection methods, the success rate of detection has been greatly improved, which is about 95.8%, an increase of nearly 40%; the detection time has been reduced by more than half, from 5.5 days to 1.9 days, and the improvement rate has reached more than 65%. In a word, this method has good practical application value in the field of microelectronic processing.

Funder

Fundamental Research Project of Science and Technology Plan of Tangshan

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference27 articles.

1. Mathematical models for information classification and recognition of multi-target optical remote sensing images

2. Application analysis of microelectronics technology in smart power consumption;L. F. Chen;China New Telecommunications,2020

3. The specific application of microelectronic control electromechanical equipment in industry;M. Deng;Electronic World,2020

4. Estimation of pixel-level seismic vulnerability of the building environment based on mid-resolution optical remote sensing images

5. Research on integrated circuit application and failure analysis method;Y. Z. Fei;Microprocessors,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3