Preventive Effect and Mechanism of Crossostephium chinense Extract on Balloon Angioplasty-Induced Neointimal Hyperplasia

Author:

Pan Chun-Hsu12ORCID,Lin Yu-Pei3ORCID,Wang Jie-Yu2,Huang Hui-Yu4ORCID,Huang Shun-Cheng2,Lo Ji-Mehng5,Wu Chieh-Hsi2ORCID

Affiliation:

1. Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan

2. School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan

3. Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan

4. Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan

5. Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan

Abstract

Balloon angioplasty-induced neointimal hyperplasia remains a clinical problem that must be resolved. The bioactivities of the Crossostephium chinense extract (CCE) have demonstrated potential in preventing the progression of restenosis. The present study evaluated whether CCE can suppress balloon angioplasty-induced neointima formation and elucidated its possible pharmacological mechanisms. A rat model of carotid arterial balloon angioplasty was established to evaluate the inhibitory effect of CCEs on neointimal hyperplasia. Two cell lines, A10 vascular smooth muscle cells (VSMCs) and RAW264.7 macrophages, were used to investigate the potential regulatory activities and pharmacological mechanisms of CCEs in cell proliferation and migration and in inflammation. Our in vitro results indicated that CCE3, the ethanolic extract of C. chinense, exerted the strongest growth inhibitory and antimigratory effects on VSMCs. CCE3 blocked the activation of focal adhesion kinase, platelet-derived growth factor receptor-β (PDGFRB), and its downstream molecules (AKT and mTOR) and reduced the expression of matrix metalloproteinase-2. In addition, our findings revealed that CCE3 significantly increased the expression of miRNA-132, an inhibitory regulator of inflammation and restenosis, and suppressed the expression of inflammation-related molecules (inducible nitric oxide synthase, cyclooxygenase-2, interleukin- (IL-) 1β, and IL-6). Our in vivo study results indicated that balloon injury-induced neointimal hyperplasia was inhibited by CCE3. CCE3 could reduce neointima formation in balloon-injured arteries, and this effect may be partially attributed to the CCE3-induced suppression of PDGFRB-mediated downstream pathways and inflammation-related molecules.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3