Characterization and Validation of an “Acute Aerobic Exercise Load” as a Tool to Assess Antioxidative and Anti-inflammatory Nutrition in Healthy Subjects Using a Statistically Integrated Approach in a Comprehensive Clinical Trial

Author:

Kim Youjin1ORCID,Choi Sungkyoung2ORCID,Lee Sungyoung3ORCID,Park Saejong4ORCID,Kim Ji Yeon5ORCID,Park Taesung36ORCID,Kwon Oran1ORCID

Affiliation:

1. Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea

2. Department of Applied Mathematics, Hanyang University (ERICA), Ansan 15588, Republic of Korea

3. Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea

4. Department of Sport Science, Korea Institute of Sport Science, Seoul, Republic of Korea

5. Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, Republic of Korea

6. Department of Statistics, Seoul National University, Seoul, Republic of Korea

Abstract

The homeostatic challenge may provide unique opportunities for quantitative assessment of the health-promoting effects of nutritional interventions in healthy individuals. Objective. The present study is aimed at characterizing and validating the use of acute aerobic exercise (AAE) on a treadmill at 60% of VO2max for 30 min, in assessing the antioxidative and anti-inflammatory effects of a nutritional intervention. In a controlled, randomized, parallel trial of Korean black raspberry (KBR) (n=24/group), fasting blood and urine samples collected before and following the AAE load at either baseline or 4-week follow-up were analyzed for biochemical markers, 1H-NMR metabolomics, and transcriptomics. The AAE was characterized using the placebo data only, and either the placebo or the treatment data were used in the validation. The AAE load generated a total of 50 correlations of 44 selected markers, based on Pearson’s correlation coefficient analysis of 105 differential markers. Subsequent mapping of selected markers onto the KEGG pathway dataset showed 127 pathways relevant to the AAE load. Of these, 54 pathways involving 18 key targets were annotated to be related to oxidative stress and inflammation. The biochemical responses were amplified with the AAE load as compared to those with no load, whereas, the metabolomic and transcriptomic responses were downgraded. Furthermore, target-pathway network analysis revealed that the AAE load provided more explanations on how KBR exerted antioxidant effects in healthy subjects (29 pathways involving 12 key targets with AAE vs. 12 pathways involving 2 key targets without AAE). This study provides considerable insight into the molecular changes incurred by AAE and furthers our understanding that AAE-induced homeostatic perturbation could magnify oxidative and inflammatory responses, thereby providing a unique opportunity to test functional foods for antioxidant and anti-inflammatory purposes in clinical settings with healthy subjects.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3