Attention-Based Multi-NMF Deep Neural Network with Multimodality Data for Breast Cancer Prognosis Model

Author:

Chen Hongling1ORCID,Gao Mingyan1ORCID,Zhang Ying1ORCID,Liang Wenbin2,Zou Xianchun1ORCID

Affiliation:

1. College of Computer and Information Science, Southwest University, Chongqing 400715, China

2. Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China

Abstract

Today, it has become a hot issue in cancer research to make precise prognostic prediction for breast cancer patients, which can not only effectively avoid overtreatment and medical resources waste, but also provide scientific basis to help medical staff and patients family members to make right medical decisions. As well known, cancer is a partly inherited disease with various important biological markers, especially the gene expression profile data and clinical data. Therefore, the accuracy of prediction model can be improved by integrating gene expression profile data and clinical data. In this paper, we proposed an end-to-end model, Attention-based Multi-NMF DNN (AMND), which combines clinical data and gene expression data extracted by Multiple Nonnegative Matrix Factorization algorithms (Multi-NMF) for the prognostic prediction of breast cancer. The innovation of this method is highlighted through using clinical data and combining multiple feature selection methods with the help of Attention mechanism. The results of comprehensive performance evaluation show that the proposed model reports better predictive performances than either models only using data of single modality, e.g., gene or clinical, or models based on any single NMF improved methods which only use one of the NMF algorithms to extract features. The performance of our model is competitive or even better than other previously reported models. Meanwhile, AMND can be extended to the survival prediction of other cancer diseases, providing a new strategy for breast cancer prognostic prediction.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3