Brucine Entrapped Titanium Oxide Nanoparticle for Anticancer Treatment: An In Vitro Study

Author:

Almuqbil Rashed M.1ORCID

Affiliation:

1. Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia

Abstract

Backgroundand Objective. The public’s health has been seriously threatened by cervical cancer during recent times. In terms of newly diagnosed cases worldwide, it ranks as the ninth most prevalent malignancy. Multiple investigations have proven that nanoparticles can effectively combat cancer due to their small dimensions and extensive surface area. In the meantime, bioactive compounds which are biocompatible are being loaded onto nanoparticles to promote cancer therapy. The current study investigates the anticancerous potential of Brucine-entrapped titanium oxide nanoparticles (TiO2 NPs) in cervical cancer cell line (HeLa). Materials and Methods. The physiochemical, structural, and morphological aspects of Brucine-entrapped TiO2 NPs were evaluated by UV-visible spectrophotometer, Fourier transform-infrared spectroscopy (FT-IR), dynamic light scattering (DLS), scanning electron microscopy (SEM), and energy dispersive X-ray (EDAX). The cytotoxic effect against the HeLa cell line was assessed using a tetrazolium-based colorimetric assay (MTT), a trypan blue exclusion (TBE) assay, phase contrast microscopic analysis, and a fluorescence assay including ROS and DAPI staining. Furthermore, estimation of antioxidant markers includes catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD). Results. The UV spectrum at 266 nm revealed the formation of TiO NPs. The FT-IR peaks confirmed the effective entrapment of brucine with TiO2 NPs. The average size (100.0 nm) of Brucine-entrapped TiO2 NPs was revealed in DLS analysis. The micrograph of the SEM revealed the formation of ellipsoidal to tetragonal-shaped NPs. The Ti, O, and C signals were observed in EDAX. In MTT assay, Brucine-entrapped TiO2 NPs showed inhibition of cell proliferation in a dose-wise manner and IC50 was noticed at the concentration of 30 µg/mL. The percentage of viable cells gradually reduced in the trypan blue exclusion assay. The phase contrast microscopic analysis of Brucine-entrapped TiO2 NP-treated cells showed cell shrinkage, cell wall deterioration, and cell blebbing. The intracellular ROS level was increased in a dose-wise manner when compared to control cells in ROS staining. The condensed nuclei and apoptotic cells were increased in treated cells, as noted in DAPI staining. In treated cells, the antioxidant markers such as CAT, GSH, and SOD levels were substantially lower compared to the control cells. Conclusion. The synthesized Brucine entrapped TiO2 NPs exhibited remarkable anticancer activity against the HeLa cell line.

Funder

King Faisal University

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3