Industrial Efficiency Algorithm Based on Spatio-Temporal-Data-Driven

Author:

Lv Hongqu1,Cheng Wensi1ORCID

Affiliation:

1. Shandong University of Political Science and Law, Jinan, China

Abstract

Stochastic frontier model is an important and effective method to calculate industry efficiency. However, when dealing with temporal and spatial data from the industry, it is difficult to accurately calculate the industrial production efficiency due to the influence of spatial correlation and time lag effect. If the traditional spatial statistical method is used, the setting method of spatial weight matrix is often questioned. To solve this series of problems, one possible idea is to design a spatial data mining process based on stochastic frontier analysis. Firstly, the stochastic frontier model should be improved to analyze spatio-temporal data. In order to accurately measure the technical efficiency in the case of dual correlation between time and space, a more effective spatio-temporal stochastic frontier model method is proposed. Meanwhile, based on the idea of generalized moment estimation, an estimation method of spatiotemporal stochastic frontier model is designed, and the consistency of estimators is proved. In order to ensure that the most appropriate spatial weight matrix can be selected in the process of model construction, the K -fold crossvalidation method is adopted to evaluate the prediction effect under the data-driven idea. This set of spatio-temporal data mining methods will be used to measure the technical efficiency of high-tech industries in various provinces of China.

Funder

National Natural Science Foundation of China-Shandong Joint Fund

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3