A Robust Adaptive CMAC Neural Network-Based Multisliding Mode Control Method for Unmatched Uncertain Nonlinear Systems

Author:

Wang Honghui1,Yu Xiaojun1ORCID,Liang Shicheng1,Dong Sheng1,Fan Zeming1,Yuan Zhaohui1

Affiliation:

1. School of Automation, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, China

Abstract

This paper proposes a new robust adaptive cerebellar model articulation controller (CMAC) neural network-based multisliding mode control strategy for a class of unmatched uncertain nonlinear systems. Specifically, by employing a stepwise recursion-based multisliding mode method, such a proposed strategy is able to obtain the virtual variables and the actual control inputs of each order first, and then it reduces the conservativeness for controller parameter design by adopting the CMAC neural network to learn both system uncertainties and virtual control variable derivatives of each order online. Meanwhile, with the hyperbolic tangent function being chosen to replace the sign function in the variable structured control components, the proposed strategy is able to avoid the chattering effects caused by the discontinuous inputs. The stability analysis shows that the proposed control strategy ensures that both the system tracking errors and the sliding modes of each order could converge exponentially to any saturated layer being set. The control strategy was also applied onto a passive electrohydraulic servo loading system for verifications, and simulation results show that such a proposed control strategy is robust against all system nonlinearities and external disturbances with much higher control accuracy being achieved.

Funder

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3