Affiliation:
1. School of Automation, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, China
Abstract
This paper proposes a new robust adaptive cerebellar model articulation controller (CMAC) neural network-based multisliding mode control strategy for a class of unmatched uncertain nonlinear systems. Specifically, by employing a stepwise recursion-based multisliding mode method, such a proposed strategy is able to obtain the virtual variables and the actual control inputs of each order first, and then it reduces the conservativeness for controller parameter design by adopting the CMAC neural network to learn both system uncertainties and virtual control variable derivatives of each order online. Meanwhile, with the hyperbolic tangent function being chosen to replace the sign function in the variable structured control components, the proposed strategy is able to avoid the chattering effects caused by the discontinuous inputs. The stability analysis shows that the proposed control strategy ensures that both the system tracking errors and the sliding modes of each order could converge exponentially to any saturated layer being set. The control strategy was also applied onto a passive electrohydraulic servo loading system for verifications, and simulation results show that such a proposed control strategy is robust against all system nonlinearities and external disturbances with much higher control accuracy being achieved.
Funder
Natural Science Basic Research Plan in Shaanxi Province of China
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献