Stacking Ensemble Method for Gestational Diabetes Mellitus Prediction in Chinese Pregnant Women: A Prospective Cohort Study

Author:

Liu Ruiyi1,Zhan Yongle12ORCID,Liu Xuan1ORCID,Zhang Yifang1ORCID,Gui Luting1ORCID,Qu Yimin1ORCID,Nan Hairong3ORCID,Jiang Yu1ORCID

Affiliation:

1. Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

2. School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China

3. Department of Endocrinology, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China

Abstract

Gestational diabetes mellitus (GDM) is closely related to adverse pregnancy outcomes and other diseases. Early intervention in pregnant women who are at high risk of developing GDM could help prevent adverse health consequences. The study aims to develop a simple model using the stacking ensemble method to predict GDM for women in the first trimester based on easily available factors. We used the data from the Chinese Pregnant Women Cohort Study from July 2017 to November 2018. A total of 6,848 pregnant women in the first trimester were included in the analysis. Logistic regression (LR), random forest (RF), and extreme gradient boosting (XGBoost) were considered as base learners. Optimal feature subsets for each learner were chosen by using recursive feature elimination cross-validation. Then, we built a pipeline to process imbalance data, tune hyperparameters, and evaluate model performance. The learners with the best hyperparameters were employed in the first layer of the proposed stacking method. Their predictions were obtained using optimal feature subsets and served as meta-learner’s inputs. Another LR was used as a meta-learner to obtain the final prediction results. Accuracy, specificity, error rate, and other metrics were calculated to evaluate the performance of the models. A paired samples t-test was performed to compare the model performance. In total, 967 (14.12%) women developed GDM. For base learners, the RF model had the highest accuracy (0.638 (95% confidence interval (CI) 0.628–0.648)) and specificity (0.683 (0.669–0.698)) and lowest error rate (0.362 (0.352–0.372)). The stacking method effectively improved the accuracy (0.666 (95% CI 0.663–0.670)) and specificity (0.725 (0.721–0.729)) and decreased the error rate (0.333 (0.330–0.337)). The differences in the performance between the stacking method and RF were statistically significant. Our proposed stacking method based on easily available factors has better performance than other learners such as RF.

Funder

School of Population Medicine and Public Health

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3