Reliable Recognition of Partially Occluded Objects with Correlation Filters

Author:

Ruchay Alexey1ORCID,Kober Vitaly12ORCID,Gonzalez-Fraga Jose A.3

Affiliation:

1. Department of Mathematics, Chelyabinsk State University, Chelyabinsk, Russia

2. Department of Computer Science, CICESE, Carretera Ensenada-Tijuana 3918, 22860 Ensenada, BC, Mexico

3. Facultad de Ciencias, Universidad Autonoma de Baja California, Carretera Tijuana-Ensenada, No. 3917, 22860 Ensenada, BC, Mexico

Abstract

Design of conventional correlation filters requires explicit knowledge of the appearance and shape of a target object, so the performance of correlation filters is significantly affected by changes in the appearance of the object in the input scene. In particular, the performance of correlation filters worsens when objects to be recognized are partially occluded by other objects, and the input scene contains a cluttered background and noise. In this paper, we propose a new algorithm for the design of a system consisting of a set of adaptive correlation filters for recognition of partially occluded objects in noisy scenes. Since the input scene may contain different fragments of the target, false objects, and background to be rejected, the system is designed in such a manner to guarantee equally high correlation peaks corresponding to parts of the target in the scenes. The key points of the system are as follows: (i) it consists of a bank of composite optimum filters, which yield the best performance for different parts of the target; (ii) it includes a fragmentation of the target into a given number of parts in the training stage to provide equal intensity responses of the system for each part of the target. With the help of computer simulation, the performance of the proposed algorithm for recognition partially occluded objects is compared with that of common algorithms in terms of objective metrics.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3