The Relationship between Mining-Induced Stress and Coal Gas under an Optimized Support Scheme: A Case Study in the Guanyinshan Coal Mine, China

Author:

Zhang Tianjun1,Wu Jiaokun123ORCID,Chen Yong234ORCID,Ding Hong23,Ma Hongyu23,Feng Renjun23

Affiliation:

1. College of Safety Science and Engineering, Xi’an University of Science and Technology, Shaanxi 710054, China

2. National Key Laboratory of Gas Disaster Detecting, Preventing and Emergency Controlling, Chongqing 400037, China

3. China Coal Technology Engineering Group Chongqing Research Institute, Chongqing 400037, China

4. School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Hunan 411201, China

Abstract

Stress is one of the main factors influencing coal and gas outbursts. The apparent effects of the crustal stress, the structural stress, and the mining-induced stress increase as the depth of mining increases. At present, there have been few studies of the relationship between the comprehensive analyses of the crustal stress, mining-induced stress, and coal gas. The in situ measurement of the relationship between stress-related behaviors and coal gas under the influence of mining was conducted through experimental analysis of surrounding rock support and coal and gas outburst control and optimization of surrounding rock support materials and system construction. The results showed that the mining-induced stress first increased to a peak value, then gradually decreased, and tended to stabilize as the footage progresses. Stress appears at 96 m ahead due to mining; after 57 m of advancing, there is a large increase until it passes through this area. The stress in front of the working face increases linearly, and the increase range is obviously larger than that of the coal body in a certain range on both sides. The support anchoring force gradually decreased and tended to be stable after rapidly increasing to a maximum value. The deep displacement of the roof increased linearly and tended to be stable after reaching an accumulated displacement which can reach 16-28 mm. The residual gas pressure in front of mining operations decreased rapidly, and beyond 15 m on each side of the roadway, it decreased significantly. The residual gas pressure and gas content were consistent with the gas desorption index of drill cuttings due to the influences of gas predrainage and mining. The stress along the direction of the roadway and the residual gas content, the residual gas pressure, and the gas desorption index of drill cuttings conform to the logarithmic functional relationship. The research results provide a basis for the comprehensive prevention and control of coal and gas outbursts from multiple angles considering stress, coal, and gas.

Funder

Special fund project for Chongqing production safety

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3