CaKernel – A Parallel Application Programming Framework for Heterogenous Computing Architectures

Author:

Blazewicz Marek1,Brandt Steven R.23,Kierzynka Michal1,Kurowski Krzysztof1,Ludwiczak Bogdan1,Tao Jian2,Weglarz Jan14

Affiliation:

1. Poznań Supercomputing and Networking Center, Poznań, Poland

2. Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA

3. Department of Computer Science, Louisiana State University, Baton Rouge, LA, USA

4. Institute of Computing Science, Poznań University of Technology, Poznań, Poland

Abstract

With the recent advent of new heterogeneous computing architectures there is still a lack of parallel problem solving environments that can help scientists to use easily and efficiently hybrid supercomputers. Many scientific simulations that use structured grids to solve partial differential equations in fact rely on stencil computations. Stencil computations have become crucial in solving many challenging problems in various domains, e.g., engineering or physics. Although many parallel stencil computing approaches have been proposed, in most cases they solve only particular problems. As a result, scientists are struggling when it comes to the subject of implementing a new stencil-based simulation, especially on high performance hybrid supercomputers. In response to the presented need we extend our previous work on a parallel programming framework for CUDA – CaCUDA that now supports OpenCL. We present CaKernel – a tool that simplifies the development of parallel scientific applications on hybrid systems. CaKernel is built on the highly scalable and portable Cactus framework. In the CaKernel framework, Cactus manages the inter-process communication via MPI while CaKernel manages the code running on Graphics Processing Units (GPUs) and interactions between them. As a non-trivial test case we have developed a 3D CFD code to demonstrate the performance and scalability of the automatically generated code.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3