Kainic Acid-Induced Neurodegenerative Model: Potentials and Limitations

Author:

Zheng Xiang-Yu12ORCID,Zhang Hong-Liang23,Luo Qi1,Zhu Jie23

Affiliation:

1. Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China

2. Department of Neurobiology, Care Science and Society, Karolinska Institute, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden

3. Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China

Abstract

Excitotoxicity is considered to be an important mechanism involved in various neurodegenerative diseases in the central nervous system (CNS) such as Alzheimer's disease (AD). However, the mechanism by which excitotoxicity is implicated in neurodegenerative disorders remains unclear. Kainic acid (KA) is an epileptogenic and neuroexcitotoxic agent by acting on specific kainate receptors (KARs) in the CNS. KA has been extensively used as a specific agonist for ionotrophic glutamate receptors (iGluRs), for example, KARs, to mimic glutamate excitotoxicity in neurodegenerative models as well as to distinguish other iGluRs such asα-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors and N-methyl-D-aspartate receptors. Given the current knowledge of excitotoxicity in neurodegeneration, interventions targeted at modulating excitotoxicity are promising in terms of dealing with neurodegenerative disorders. This paper summarizes the up-to-date knowledge of neurodegenerative studies based on KA-induced animal model, with emphasis on its potentials and limitations.

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Genetics,Molecular Biology,Molecular Medicine,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3