Multistage System-Based Machine Learning Techniques for Intrusion Detection in WiFi Network

Author:

Thang Vu Viet1ORCID,Pashchenko F. F.23

Affiliation:

1. Moscow Institute of Physics and Technology (State University), Moscow, Russia

2. The Department of Information and Communication Technologies, MIPT (State University), Moscow, Russia

3. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia

Abstract

The aim of machine learning is to develop algorithms that can learn from data and solve specific problems in some context as human do. This paper presents some machine learning models applied to the intrusion detection system in WiFi network. Firstly, we present an incremental semisupervised clustering based on a graph. Incremental clustering or one-pass clustering is very useful when we work with data stream or dynamic data. In fact, for traditional clustering such as K-means, Fuzzy C-Means, DBSCAN, etc., many versions of incremental clustering have been developed. However, to the best of our knowledge, there is no incremental semisupervised clustering in the literature. Secondly, by combining a K-means algorithm and a measure of local density score, we propose a fast outlier detection algorithm, named FLDS. The complexity of FLDS is On1.5 while the results obtained are comparable with the algorithm LOF. Thirdly, we introduce a multistage system-based machine learning techniques for mining the intrusion detection data applied for the 802.11 WiFi network. Finally, experiments conducted on some data sets extracted from the 802.11 networks and UCI data sets show the effectiveness of our new proposed methods.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3